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Solutions of the f-g field equations 

Metin Gursest 
Max-Planck-Institut fur Physik und Astrophysik, Karl-Schwarzschild-Strasse 1, Garching 
bei Munchen, West Germany and Department of Physics, Middle East Technical Uni- 
versity, Ankara, Turkey 

Received 2 October 1980 

Abstract. The f-g field equations are solved for an arbitrary mixing term. Several 
techniques are given to generate solutions of f-g field equations with and without sources 
for a special mixing term. Some new solutions are also presented. 

1. Introduction 

Analogous to the p-y model of hadron electrodynamics (Lee et a1 1967), Isham et a1 
(1971) have developed a theory of strong and weak gravitations, the f-g field theory, to 
describe the mixing of the gravitation with a massive spin-two f-meson which interacts 
universally with hadrons through the energy momentum tensor. In the f-g field theory 
the gravitation interacts directly with leptons, but only indirectly with hadronic matter. 
In this unification scheme of gravitational and strong nuclear forces it is assumed that 
the interaction term in the total Lagrangian density is free of derivatives and reduces to 
the form of a Pauli-Fierz mass term in the flat space approximation. 

These assumptions do not determine the mixing term uniquely. There are infinitely 
many ways to satisfy these requirements. Two different examples have been used so far 
(Isham eta1 1971, Isham and Storey 1978). In spite of this defect, it has been observed 
that the classical source-free field equations corresponding to different mixing terms 
have common solutions (Salam and Strathdee 1978). One of the purposes of this paper 
is to clarify this point. Irrespective of the form of the mixing term, we show that there 
exists a simple relation between the Einstein tensors of the f and g fields. By using this 
remarkable property, it is possible to state that if one of the fields is a metric of an 
Einstein space then the other field is also a metric of a different Einstein space (Gurses 
1980). Since this statement is independent of the mixing term, Salam and Strathdee 
(1977, 1978) and Isham and Storey (1978) solutions are also solutions of the f-g field 
equations with an unspecified interaction Lagrangian density. 

The free Lagrangian density contains two Einstein parts corresponding to the fields f 
and g, respectively, in addition to the mixing term. Hence the field equations of the f-g 
field theory are more complicated than the Einstein field equations. In order to simplify 
the field equations the symmetries of the space-times have been increased and hence 
some few solutions have been found. The second purpose of this work is to propose a 
method of generating solutions of the source-free f-g field equations from Einstein 
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spaces. We also divide the solutions into two classes according to whether the f and g 
fields are isometric or not. 

It has been suggested that the classical f-g solutions may provide a mechanism for 
quark confinement (Salam and Strathdee 1977a, 1978). In this connection some 
spherically symmetric solutions have been found and interpreted as the effective 
tensorial potential for confinement. To support this, the massive Klein-Gordon 
equation (which is assumed to be the equation of motion of the quark field) has been 
solved and it was observed that the energy spectrum is the same as that for a harmonic 
oscillator potential. Another purpose of this paper is to improve this program a little bit 
further. In their model, Salam and Strathdee neglected both the leptonic and hadronic 
matter. In this work, we shall assume the existence of hadronic matter but neglect 
leptonic matter. We shall find some solutions when the hadronic energy momentum 
tensor is of the form of electromagnetic and Yang-Mills energy momentum tensors. 

As a summary, this work contains: (i) a relation between the Einstein tensors of thef 
and g fields ( f -g  identities) in Q 2 ,  (ii) solution generation techniques and source-free 
solutions in Q 3 ,  (iii) f-g field equations with hadronic matter and solutions in 9 4 and (iv) 
some matrix identities and applications of the solution generation techniques presented 
in Q 3 are given in the appendices 1 and 2 ,  respectively. 

Our notation and conventions are as follows: fKY and g,, are the covariant 
components of the tensor fields f and g ,  and their inverses are f”” and g’”” respectively. 
Also 

f = det f,, g = det g&,. 

Geometrical quantities, such as the Ricci tensors RCIY( f )  and R,,(g) corresponding to 
the fields f and g respectively, are constructed by defining two symmetric connections 
rz,(f) and r*,,(g) from f and g respectively, as in Riemannian geometry. We shall fix 
only the signature of the g field as -2 .  Later we shall see that the signature of the f field 
can be different from that of the g field. The components of the curvature tensor and its 
contractions in terms of the affine connection are given by 

R;~ , ,  = r z ” , ~ - r ~ ~ , ” + r ~ ~ r ~ Y - r ~ Y r ~ ~  
R = R 

The Ricci scalars are 

2. The f-g identities 

The essential prescription in the f-g theory is that the hadronic matter Lagrangian is to 
be formed usingf”’” as a metric tensor while for the leptonic one must use g””. Thus the 
combined Lagrangian is 

where 

2’~ = - K i 2  (-f)’/’R(f) +2(hadrons,  f) 
Sg = -Kg2 ( - g ) ’ / * R ( g )  +2(leptons, g ) .  

(2 .2)  

(2 .3 )  
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The hadronic and the leptonic parts of the universe interact via an f-g mixing 2?f-g. This 
term is required to have the following properties (Isham et a1 1971, Salam and 
Strathdee 1978). 

(i) In addition to being a scalar density it contains no derivative terms. 
(ii) It leads to the emergence of mass of the f field, corresponding to the finite-range 

nature of strong interactions, whereas the g field remains massless, corresponding to the 
infinite range of gravitational interactions. 

With the first assumption the general form of the mixing term may be written as 

2?f.g = J-g7 (2.4) 
where r is a scalar with the functional form 

7 = r ( f w v ,  g,w 4 @ w  p @ Y )  OA) 

4 ILY = f wagay PIL,  = gFafaY (2 .6)  
and (PA, A = 1, . . . ) N, are the fields other than the f and g fields, N being the number of 
extra fields. The presence of these other fields in the interaction Lagrangian density 
makes the field equations much more complicated. There are several cases where these 
terms cannot be separated from 2?f-g and absorbed in one of the free parts zf or 2?g. An 
example is 

(2.5) 
where 

(2.7) 

where E,, are the components of the electromagnetic field tensor. In this work we shall 
be interested only in those mixing terms that contain only the f and g fields. With this 
assumption (2.5) takes a very simple form 

P P  4 r = f  g EFaEV, 

7- = 7(4@,) (2.8) 

where the functional dependence on plLv is omitted because this mixed tensor is the 
inverse of C#I”~, i.e. 

q5@apq” = p f i a 4 q ”  = a,,. (2.9) 

In (2.4) we could use c f  instead of &g to make 2?f-g a scalar density of the correct 
weight. This would not make any difference, because 

- -  
2?f-g = C f r  = J - g J f / g r  

= 4-g (det C $ ’ ~ ) - ~ ’ ~ T  

but det(q5qp) is also a function of c$”,,, hence we can always write that 

(2.10) 

The mass term for the f field is produced by letting (Isham et a1 1971) 
f &” = 77 

giLy = q + K g H g y  
-t KfF@” 

and expanding 2?f-g up to quadratic terms and equating it to the Pauli-Fierz Lagrangian 
density 
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where q”” is the Minkowski metric. We may write 

2?-g = 2Zo + 3’ + - P I  

where 2Zo, 2” and 9” contain no terms, linear terms, and quadratic terms of the F and 
H fields, respectively. In order to have a mass term for the F field we must let 
2’ = 2’ = 0 and equate 3” to (2.11). Since they are neglected, the higher-order terms 
are left free. Hence, the two properties given at the beginning of this section are not 
enough to fix the mixing term 2Zf-g. 

The most commonly used mixing terms are 

(2.12) 

where in addition to the mass M an arbitrary parameter U has been introduced, and Kf 
is the strong analogue of the gravitational constant Kg.  Lflf-g may be given in terms of 
4”” so that T takes the form 

121. (2.13) 

Alternatively, 

2Z& = A  J<+hfJ-f-(A +A’)(-f)“(-g)P{-det[xg””” +(1 - ~ ) f ” ” ] } ~ + ~ - * ’ ~  

where the parameters are subject to two constraints 

(2.14) 

~ [ - ( u x  + p(1 -x)](A + A ’ )  = -xA’+ (1 -x)A 

((U + p  - ~ ) x ( x  - 1 ) ( A  + A ’ ) * = $ A A ’ .  

The scalar function r for this case is given by 

. (2.15) rrl=A +A’(det # I ” ~ ) - ~ ’ * - ( A  +h’)(det 4”v)“{-det[xS”,+(1 -x)4””]} 
The field equations corresponding to a general coupling term with T = ~ ( 4 ” ~ )  are 

found as follows. Upon varying f””, the action principle S 5 3 d4x = 0 gives the field 
equations 

GcLY( f )  = R W Y ( f )  -if,J(f) =K;TFYt. (2.16) 

a + P - 1 / 2  

where 

1 Twyf = - ---+ T,+,(f, hadrons). Cf af”” 

1 azf-, 
4-g ag”” 

Twyg = - - + TFv(g, leptons). 

(2.17) 

(2.18) 

(2.19) 

We define a mixed tensor 

(2.20) 
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which has the following properties 

tPc,gBv = tPygp, 

f@Yp = fPYtFB. 

(2.21) 

(2.22) 

The proof of these identities is as follows. Since the scalar function T is a polynomial of 
the invariants of the mixed tensor 4@,,, then tFL, is a tensorial function of 4,”; i.e. 

(2.23) 
i times 

where ti are scalars, then the proofs of (2.21) and (2.22) become obvious. Utilising 
these identities we find 

which leads to an important relation 

where 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Equation (2.25) is also equivalent to 

J ~ T ~ ~ ’ ,  + J-frfc,, = - ~ 2 f - g S c , ,  +JqT’ ” , , (g ,  leptons) +J-fT”,(f, hadrons) (2.28) 

which means that the total energy momentum tensor density of the combined system 
has a pressure-like term in addition to the leptonic and hadronic energy momentum 
tensor densities. This so-called ‘bag’ term should play an important role in the 
confinement problem. In the case of no source (2.28) reduces to 

K i 2  J<G’” , (g)+Kj2 J-fGWv(f)= -;9f-g8Fv. (2.29) 

An immediate consequence of (2.29) is the generalisation of a result reported 

GFLY(g)  = Agg,, A, =constant (2.30) 

We refer to these relations as the f-g identities. 

recently (Gurses 1980). If g,, is an Einstein space 

then f iLY is also an Einstein space 

(2.31) 

(2.32) 

and vice versa. Salam and Strathdee (1978) have observed that the empty f-g field 
equations have sometimes common solutions, although,their mixing terms are different. 
Our last result clarifies this point, since it shows that Einstein space solutions are 
independent of the mixing terms. 
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3. Solutions of source-free field equations 

In this section we shall only consider the mixing termZ;-,, given in (2.12), and introduce 
some methods to solve the emptyf-g field equations. Using ( A 5 ) ,  (2.16) and (2.18) we 
obtain 

G’*LY(f)=aM2(g/f)U[-(~-~)If’Y+2(34-3+H)g’*”-2H’*,1 (3.1) 
and 

G,,(g) = ~ ~ o ~ M ~ ( g / f ) ” - ~ ’ ~ { [ - 2 4 ( 3 ~  - 3  + H )  + ~I lg , ,  

- 2(24  - 3 + H)HFY + 2Hp,Hpy} 

I = -4(4 - 1)(34  - 3 + H )  - H ( 2 4  - 2  + H )  + HaPH,p (3.3) 

PO = Kg/Kfi  (3.4) 

(3.2) 
where 

We shall now state a theorem concerning the above empty field equations (Gurses 
1980). 

Theorem. Iff’*” and g’l“ satisfy the empty f-g field equations (3.1) and (3.2) and if 4 and 
H’” obey ( A 5 )  respectively, then the following three statements are equivalent 

G’*”(f) = A f f P  (3.5a) 

G,”k)  = h&,” (3.5b) 

H”,H“, = aH’, + b8’*, ( 3 5 )  

~ = 2 4 - 3 + H  (3.6) 

where hf  and A, are cosmological constants corresponding to the fields f and g 
respectively, and a and b are scalars. Without ( 3 . 5 ~ )  this theorem is a special case of the 
result given at the end of the previous section. For this special case, ( 3 . 5 ~ )  follows from 
(3.2) with 

b =/1 .02 (4 /M2) ( f /g )u -1 ’2hg  + 2 4 ( 3 4  - 3 + H ) - u I  (3.7) 

and a is given in (3.6). Using (3.5)-(3.7) in ( A 7 )  we find 

f F V = ( d 2 + 4 a  -b)-’[(4 +a)g,v-HFYI (3.8) 

(3.9) glf = (b  -4 ’ -  aq5)(-42+&.zH + b +a4 - i H 2 - a 2 - 4 H )  

and 

1 = - 1 2 ( 4  -1)’- b ( 4  - 1 ) H - H 2 + a H + 4 b .  

It follows by a straightforward calculation, from (3.6),  (3.8) and (3.1), that 

G’*”(f) = A f f K Y  

where 

A f  = iM’(g/f)’ [( U - $)I + 2 ( 4  + - b)] .  

(3.10) 

(3.11) 

(3.12) 

This remark completes the proof of the theorem. We may choose the arbitrary function 
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q5 in (A10) so that the scalar b appearing in (3.5) vanishes. With this simplification we 
find that (see A15) 

H = n a  n = 1,2 ,  3. (3.13) 

The cosmological constants Af and A, depend on 4 and U, hence the conformal factor 4 
is constant whenever one of the fields is the metric of an Einstein space. We shall now 
give some applications of the above theorem. 

3.1. Coordinate transformations 

General covariance of the f-g field theory requires simultaneous transformations of 
both fields under the general coordinate transformations (locking together property). 
Geometrically the two fields may be isometric to each other but the ‘locking together 
property’ prevents them from being identical. Utilising this fact and the above theorem, 
we propose a method to generate a solution of the empty f-g field equations with Yi-,, 
from an Einstein space. The first step is to choose an Einstein space &,, with 
cosmological constant i. The second step is to perform a regular coordinate trans- 
formation. If the transformation matrix is ScL,  = ax”/dx’”, then the metric in the new 
coordinate system (x”) is given by 

g’“O(x’) = s*,s~,g””(x‘ ) .  (3.14) 

The third step is to choose the new coordinates in such a way that (3.14) takes the form 

g”,,(X’) =4-1gfi,,(x‘)-4-1(q5 +a)-’H,,, (3.15) 

where 4, a and Hwy obey the conditions (3 .3 ,  (3.6) and (3.13) and where &,(x’) is also a 
metric of an Einstein space with cosmological constant 1. The final step is to identify 
i ’ ’ , ( x ’ )  in (3.15) as the f field and g f i L y ( x ’ )  as the g field (see appendix 2, for application). 

We divide the solutions obtainable by this method in two classes, according to 
whether the fields f and g are isometric or not. The solutions found by Salam and 
Strathdee (1977) and Isham and Storey (1978) fall into the first class. We shall show 
how to obtain this solution in appendix 2 by use of the method presented here. It is clear 
from (3.13) that there are at least three f fields corresponding to a g field. For all these 
solutions the cosmological constants are 

Af = ‘$W2K”[(; - u)I + J ]  

A, = C L o 2 $ ~ 2 ~ u - 1 / 2 ( ~ ~  - J )  

and 

(3.16) 

(3.17) 

(3.18) 

The Isham-Storey solution is obtained simply by taking the g field as the Schwarz- 
schild-de Sitter metric and letting n = 1. As a further illustration of our method we 
present the following generalisation of the Isham-Storey solution 

(3.19) 

(3.20) 

(dS,)2 = q dt2 - q-’ dr2 - r2  de2  - r2  sin2 6 d 4 2  

HWu dx’ dx”=c$(3-4)(Uw d ~ ” ) ~ - ( 2 4 - 3 ) ( 4 ~  dx”)2 
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where 

(3.21) 

(3.22) 

U, dx’”=(q4-’--pp)’/*dt+q -1 p 1 / 2  (q-p)1’2dr 

q, dxl* = r sin 8 d 4  

and the functions p and q are given in appendix 2,  with 

p = (3 - 4)p  0 < 4 < 3 .  (3.23) 

This solution corresponds to n = 2 and hence a = 3 - 2 4 ,  where 4 remains an arbitrary 
constant. The other solutions, for example the solution with n = 3 ,  may be found by 
using a similar procedure. 

3.2. Conformal scaling 

As a second application of the theorem we let Hpy  = 0. The fields become conformally 
related and the cosmological constants are given simply by 

(3.24) 

(3.25) 
1 since fPLy = 4-  g,, and 4 is a constant, then 

Af = 4A, (3.26) 

hence 4 is constrained to obey the following equation 

2 + [ 1 - 2 u  -t po2(1 + 2 u 114 - 2upo2 = 0 (3.27) 

where we assumed that 4 # 1 (see Pirani (1971) for 4 = 1 case; this result corresponds 
to U = 0 in which case (3.27) has no solution for 4, hence 4 = 1).  We note that 4 in 
(3.27) has sometimes negative values, for example if 

then 4 = fpO,  hence there are some f-g fields having different signatures. 

3.3. Generalised Kerr-Schild metrics 

Let us assume that H,,, = 2 VAJ,, where V is a scalar function and A, is a null vector. In 
this case H = a = 0 ,  4 = z, g/f = 44 and 

2 3 4 u  A f = &  (3) ( 1 + u )  

A, = - & f 2 p o  2 (3 )  3 4u-2 (z+ 3 U )  

and (3.8) reduces to 

(3.28) 

(3.29) 

which is of the generalised Kerr-Schild type. If g,, is the metric of an Einstein space, we 
must find V and A, so that f,” belongs to an Einstein space as well. The Carter 
(1972)-Plebanski-Demianski (1976) solution (see appendix 2 )  is of this form. 
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We present now one more new solution of this form. The solution is (Gurses and 

(3.31) 

Guven 1980) 

(dSg)2 = Re2(2 du du -2 dz d2) 

(3.32) 

(3.33) 

(3.34) 

Ro and a are arbitrary real and complex constants respectively, and A, = 6aG,O, is the 
Beltrami operator of the second kind constructed by the field g. The special case 
V = R 3 h ( u ) ,  where h ( u )  is an arbitrary function of U, has recently been given by Barnes 
(1979). In this and Carter-Plebanski-Demianski solutions we have Af = 4Ag as in the 
case of the conformally related f-g fields. Combination of this relation with (3.28) and 
(3.29) leads to 

We have given, so far, some solutions of the empty f-g field equations so that each of 
the fields is an Einstein space. Another solution, which is not constructed by means of 
our theorem, is obtained by letting 4 = 1 and using the generalised Kerr-Schild related 
form (3.30) in the field equations (3.1) and (3.2). Field equations simply reduce to 

GWv( f) = -M2 VA,A, (3.35) 

G,,(g) = P O ~ M ~ V A , ~ , .  (3.36) 

As far as the g field is concerned, which is a solution of (3.36), we may use a known 
solution of the Einstein field equations with a pure radiation source. Hence the 
problem is to find a function V and a null vector A, which satisfy (3.35). A solution of 
this type has been given by Aichelburg et a1 (1971); it reads 

(dS,)2=2du dv-dx2-dy2-2G(U,x, y)dU2 
(3.37) 

A, dx, = du v = V(U, x, Y )  

where G and V are subject to satisfying the following differential equations 

V2@ = 0 @ =  V + 2 G  

v2 v + m 2  v = 0 m2 = +M’(I + @02) 
(3.38) 

where V2 = a2/ax2+d2/ay2. The interesting feature of this type of empty solutions is 
that the total energy momentum tensor density given in (2.28) vanishes. If this is the 
case for a general mixing term, the solutions given above are also independent of the 
mixing terms. When the mass m in (3.38) vanishes the solution reduces to the well 
known plane-fronted waves in general relativity (Ehlers and Kundt 1962). 

4. Non-vacuum f-g field equations 

f-g field equations with source terms have been considered by several authors. A 
solution with a null leptonic energy momentum tensor has been given by Aichelburg 
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(1973). On the other hand particle-like solutions to gauge fields coupled to thef-g field 
equations have been studied by Sayed (1979). In connection with the quark 
confinement problem Salam and Strathdee (1978) have given an approximate solution 
to the massive scalar field coupled to the f-g field. We shall here assume that no 
leptonic matter exists and let the g field be the metric of an Einstein space. With this 
assumption and (2.28) the field equations are given by 

In spite of the source term in (4.2) we still have the relation (A5) and the constraints 
(3 .3 ,  (3.6) and (3.13). 

We shall present here some solutions of the above field equations when the energy 
momentum tensor of hadrons is substituted by the energy momentum tensors of 
electromagnetic and of Yang-Mills fields. 

4. I. Electromagnetic fields 

The g field is the Schwarzschild-de Sitter metric and the f field is the charged- 
Schwarzschild-de Sitter (Reissner-Nordstrom) metric, so that 

(dS,)2 = dt2 - dr2 - r2 dR2 - 2(m/r + $Ar2)(dt + dr)‘ 

HFY dx’ dx = 7 (dt + dr)’ 4 2 (4.4) 

A ,  dxl” = (e/r)(dt+d,r). (4.5) 

(4.3) 

e2 
4r 

The cosmological constants hf and A, are the same as those given in (3.24) and (3.25), 
A,  is the electromagnetic vector potential, and e is the electric charge. 

4.2. Yang-Mills field 

The simple generalisation of the previous solution is to multiply the electromagnetic 
potential A,  by the constants p a  and admit this product as the potential of the 
Yang-Mills fields (Yasskin 1975). We note that Sayed’s solution can be reduced to the 
abelian (Reissner-Nordstrom) solution given in § 4.1 by a proper gauge transformation. 
In addition to these trivial solutions we give a solution of thef-g field equations coupled 
to null Yang-Mills fields. The solution is given as 

(dS,)2 = lT2(2  du dv - dx2 - dy2) 

HFY dx’” dx” =2V(u,  x, y )  du’ 

A t  dx’” =A”(u,  x, y )  du (4.8) 

(4.9) where R is given in (3.34) and 

U,V = (1/4~)K?y,bB“’”B 
with 

B“, =A“, ,  -(3/Ag)1’2AaR-1R,CI 
and 

0,A“ = A,A”. 

(4.10) 

(4.11) 

(4.12) 
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The cosmological constants are exactly the same as given in (3.28) and (3.29); Yab given 
in (4.10) is the metric of the N-dimensional Lie group. The group indices (Latin indices) 
run from one to N. This solution in flat space-time has been given by Coleman (1977) as 
an example to the non-abelian plane-Yang-Mills waves. The generalisation of this 
solution to general relativity has been given by Guven (1979) and Trautman (1980). 
Our solution reduces to their solution by letting A, = 0. We note that the gauge 
potential has a mass term which is proportional to the cosmological constant A,, i.e. 

O,-Awa = m2AC”,  (4.13) 

where m 2  = $4, and Of is the Beltrami operator of the second kind constructed from the 
f field. 

5. Conclusion 

We studied the f-g field equations and showed that the Einstein space solutions are 
independent of the mixing terms. This clarifies why the Schwarzschild-de Sitter metric 
emerges as the common solution of the f-g field equations with different mixing terms. 
We have introduced several techniques to solve the field equations. Utilising these 
techniques and the known solutions of the Einstein field equations with the cosmologi- 
cal constant we have found classes of solutions. Most of the known solutions of the f-g 
field equations are in these classes. 
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Appendix 1 

In this appendix we give some matrix identities which are used in the text. Any 4 x 4 
matrix, say 4 ILY, defined in (2.6), satisfies its secular equation 

-64”a4“p4PRpy +64“a4”&pp4pu + 3 [ 4 “ ~ 4 ’ ~  - (4a0)214C”y4yy 

where 
+[(4“,)3-34U,4P,4u13 +24ap4Pu4ua14C”u =6S’, det C#J“~ (AI)  

The inverse of 4C”u is found from (Al) ,  provided det 4ap is different from zero, as 

p w Y  = (det 4py)-’{-4’”a4ap4Py +4aa4 ’”~4py  +%4~~04’ ,  -(4“a)214C”Ly 
+ i [ (4“,  ) 2  - 34*,4 p u 4 u p  + 24“p4pu4uu IS’”,). (-43) 
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This last equation enables us to write f W v  in terms of q5*, and g,,, 

We now introduce a scalar function 4 and a symmetric tensor H'*' as (Gurses 1979, 
1980) 

f @ u = 4 g K L Y + H @ Y ;  (A51 
hence, we obtain 

where the indices of H p v  are raised and lowered by g p u  and g,, and 

f o  = ( f / g ) [ 4 3  + d 2 H  + $4H2 -i(4 +H)hz +%H3 + $h3] 

f i  = ( f /g)( ihz  - 4 2  -4H -$H2) 

f 2  = ( f / g ) ( 4  + H )  

(A81 

f 3  = - f / g  

and 

hi = H = H @ ,  

h3 = HapHPpHPa 

h2 = H a p H P n  
(A9) 

h4 = HapHpUHPpHPa. 

We note that the form fF,, given in (A5) is invariant under the following transformations 

where 9 is an arbitrary scalar function. It is clear that ( A l )  is also valid for H w ,  when 
q5wv is replaced by H*,. If it satisfies an additional equation, such as 

HFmH",  = aHg,  + b6&,, (A1 1 )  

then the scalars a and b are found as 

h z = ~ H + 4 b  

h3 = a2H+4ab +bH ('412) 

h4= a3H +4a2b +2abH+4b2 

and hence, using (A1,l) in the secular equation of H W Y ,  we obtain (Gurses 1979) 

( H 2  - 3aH +3u2 - hz)(H - 2 a )  = 0. (A13)  
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Let us choose the function cc/ in (A10) so that b in ( A l l )  vanishes; then (A13) becomes 

(A141 

H = n a  n = 1,2,3.  (A15) 

( H  - a)(H - 2a)(H - 3a)  = 0 

or 

Appendix 2 

As an application of the method given in 0 3, we give in this appendix two examples, 
(i) €sometric f-g fields. First we choose the de Sitter-Schwarzschild metric 

(dSg)’= iWLy dxC” dx“ 

= p dt2 - p - l  d r 2  - r2  d o 2  (A16) 
where 

and 
formations 

is the cosmological constant, then we perform the following coordinate trans- 

(A18) 

where G(r’, t’) is an arbitrary function of r‘ and t’. The transformed metric in (A16) 
becomes 

(A191 

t = t’ + G(r’ ,  t‘) = 4-WrI 

(dSg,)’ = fig,, dX’& dX’” -OH,“ dx’, dX’” 

where 

with 

and the metric g,“ is given by 

gSLy dxtw dx‘’ 2 q dt” -4-l drr2 - rr2  do2.  
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We notice that g,” is also a de Sitter-Schwarzschild metric with mass CL. and cosmologi- 
cal constant A. Now the next step is to choose the arbitrary function G(r’, t’) in (A18) so 
that HFY in (A20) satisfies the constraint ( 3 . 5 ~ )  and (3.13). We obtain 

with 4 = %, a = p- ’ -$ ,  and p an integration constant, hence (A19) becomes 

1/2 U, dx‘, = - [ $ ( q - e ’ ) ] l i 2 d r ’ + [ ~ ( - p ‘ p + f q ) ]  1 3 dt’ 
4 

As a final step we identify if,,, as the f field and 
constants are given by 

as the g field. The cosmological 

~ ~ = i  = ~ z ( q ) 3 “ p - - ” - 1 [ 1 + ( 1 - $ p ) ( U  -$)I 
A, = A  = - ~ c L 0 2 ~ 2 ( ~ ) 3 u - 3 / 2 p - u - 1 / 2 [ 1  + U(1-3p)l. (A24) 

If p = 5 then a = 0 and U, becomes a null vector. 

Plebanski and Demianski (1976) (Kerr-de Sitter solution) 
(ii) Anisometric f-g fields. We start with the metric given by Carter (1972) and 

A A 
X E O  Z E O  

(dSg) = 2 (dt - poa sin2 8 de)’ - sin2 8 7 [ a  dt  - p o ( r 2  + a’) d4I2 

c c 
-PO‘( - A dr2 f~ do2) 

where 

X = r 2 + a 2 c o s 2 e  

A=(r2+a2)(1-$r2)-2mr 

A =  1 +&b2 cos2 8 

E o  = 1 -$Xu2 

and po is an arbitrary constant which may be eliminated by a coordinate transformation. 
Now we perform the following coordinate transformations 

Then we obtain 

2 mr 
I: (dSgl)2 = po2( (dS,)’- - (A, dx’,)’ 
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where 

1971 

dr2 
1- 2 A 12 c 

= (1 - YAr ) --- dt - -- 
1 +%ha ( r 2 +  a2)(1 -4Xr2) 

--d82-(r2+a2)(1 +$Xa2)sin2 8 d 4 2  
z 
A 

and we observe that the trace of I f w y  vanishes. Hence 

then the condition ( 3 . 5 ~ )  is automatically satisfied by letting po2 = q5-I  = $. We can now 
identify the metric as the f field and the metric gFv as the g field. The metric gwy is 
the de Sitter metric written in a different coordinate system (see Carter 1972). The 
cosmological constants are 

A f = X  A, = $ X  (A311 

which leads to 

where p o  is defined in (3.4). 
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